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Abstract 

Single-crystal X-ray diffraction ( M o K a  radiation) is 
used to determine the structure of (Zr9N8_zF l_zO2z)Fll, a 
,4 - -0 .22  member of a wide-range non-stoichiomelric 
solid solution in the zirconium nitride oxide fluoride 
system. The structure is refined as a compositely 
modulated structure composed of two mutually incom- 
mensurable Q and H substructures with overall super- 
space-group symmetry Acmm(O,O,1.222..)OsO. The 
Zr9N8_zF ~_zO2z subsystem has lattice parameters 
a =5 .152(2 ) ,  bo = 5.364(2) and c a = 5.379(2)A, 
and substructure superspace-group symmetry 
Acmm(O,O,1.222..)OsO. The F subsystem has lattice 
parameters a --- 5.152 (2), bt_ t = ½ ba = 2.682 (1) and 
c/./ =4.401(2),~, ,  and substructure superspace-group 
symmetry Pmcm(O,½,0.8181...)sO0. Refinement on 460 
unique reflections converged smoothly to R = 0.019. 

1. Introduction 

An anion-excess, fluorite-related solid solution occurs in 
the zirconium nitride fluoride/zirconium nitride oxide 
fluoride system (Jung & Juza, 1973; Schmid & Withers, 
1994) for an anion-to-cation ratio between 2.12 and 2.25 
(i.e. MX2+ a, 0.12 < A < 0.25). Initially it was thought 
that this phase was a pure nitride fluoride. The 
formulation as a nitride oxide fluoride rather than a pure 
nitride fluoride is due to two recent papers by 
Schlichenmaier, Schweda, Str~ihle & Vogt (1993) and 
Schmid & Withers (1994), where it was found that the 
phase can contain a significant amount of oxygen (up to 
10% of the total anion concentration). 

To date, there has been only one single-crystal X-ray 
structure refinement within the composition range of the 
solid solution (Jung & Juza, 1973). This refinement was 
of Zr108N98F138, corresponding to an anion-to-cation ratio 
of  -~ 2.185, i.e. ,4 = 0.185. The resultant structure was 
described as a 27-fold superstructure of an anion-excess 
fluorite-related subcell. Although the positions of the 
weaker satellite reflections better approximated a 59-fold 
supercell, a 27-fold supercell was used in order to reduce 
the possible number of independent variables to be 
refined and also because the f'mal R value for the latter 
(0.113) was only slightly higher. 
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Recently, it has been shown that the whole solid 
solution is best described as an incommensurate 
compositely modulated phase (Withers, Schmid & 
Thompson, 1993) composed of two substructures (Q 
and H), which are mutually commensurable along their 
a- and b-axis directions, but whose relative periodicity 
along their colinear c-axis directions is linearly depen- 
dent on the anion-to-cation ratio (Schmid & Withers, 
1994). The strongly scattering Q substructure corre- 
sponds to the anion-excess fluorite-related subcell of 
Jung & Juza (1973), while the continuously variable 
composition-dependent primary modulation wavevector 
thereof, qo, is given by a reciprocal lattice vector of the 
H substucture, i.e. c ,* .  In these terms, the 972 unique 
reflections Jung & Juza (1973) used for refinement of 
Zr108N98F138 consisted of 240 parent, 414 first-order 
satellite, 58 second-order satellite, 252 third-order 
satellite and only 8 fourth-order satellite reflections. This 
has to be compared with the 27 orders of satellite 
reflections that should nominally be observable. The 
large number of unobserved satellite reflections causes 
special correlations between structural parameters which 
make the least-squares refinement of this structure in 
terms of a conventional superstructure difficult. 

In general terms, all such structures can be described 
as inorganic misfit layer compounds characterized by a 
strictly alternate stacking of two different types of layers 
(Makovicky & Hyde, 1992). These two different types of 
layers can be described as a layer of pseudo-tetragonal 
edge-sharing {A}M 4 tetrahedra (consisting of a 4 4 net of 
anions sandwiched between similar but lower density 
nets of cations, i.e. a { 100} layer of fluorite type) and a 
p s e u d o - h e x a g o n a l  3 6 net of anions. In accordance with 
IUCr convention, the first substructure is labelled Q and 
the second H (Guinier, 1984). 

The general stoichiometry of the phase can be 
rewritten with respect to these two subsystems as 
(ZrNl_~a/2_zFA/2_zOEz)Fl+ A, with 0.12 _< ,4 _< 0.25. 
Note that there are as many anions in the Q substructure 
(the part of the formula in parentheses) as there are metal 
atoms, giving an overall Q substructure stoichiometry of 
ZrA. This means that the H substructure has to 
accommodate 1 + ,4 anions (where A is the number of 
additional anions with respect to the fluorite structure). ,4 
can be determined directly from the ratio of the average 
substructure c-axis dimensions CQ/C n. Measurement of 
average substructure unit-cell dimensions as a function of 
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Table 1. Impor tan t  p a r a m e t e r s  f o r  the data col lect ion on 

(Zr9N8_zFl_zO2z)Fll 
Space group A c m m  (0,0,1.222..)0s0 
Cell dimensions 

a (~k) 5.152 (2) 
b (~) 5.364 (2) 
c (A). 48.411 (17) 
c a (A) 5.379 (2) 
c n (A) 4.401 (2) 

Formula weight 1061.01 
Z 4 
Density (gcm. -3) 5.764 
Wavelength (A) 0.71069 (Mo Kct) 
Monochromator Graphite 
Scan mode to scans 
Scan width (° in to) 1.1 + 0.35tan0 
Scan speed (° min -l) 1.5 
Attenuation factor 16.04 
/z (cm-l) 67.85 
20 range (°) 4--70 
h, k, l range 4-8, 4-8, 4-78 
No. of collected reflections 23 055 
Unique reflections with 1 > 3a(l) 460 
No. of parameters 28 
Absorption correction Gaussian (14 x 14 x 14 grid) 
Transmission factors 0.646 < T < 0.718 
Extinction correction Isotropic, type II, 0.044 (4) 

Note: Composi t ion-dependent  parameters are calculated for z = 0 in 
the above formula. 

measurement, c~t - - ~ c ~ .  This enabled the data collec- 
tion to be performed with respect to a 9 times c 
superstructure of the more strongly scattering Q 
substructure. 

Accurate supercell-lattice parameters (see Table 1) 
were obtained from a least-squares fit of the setting 
angles for 25 reflections with 20 values between 23 and 
41 ° for MoKc~ radiation. A Philips PW1100/20 diffract- 
ometer was used for data collection. Background 
counting time was 10 s on either side of the scan. Square 
slits subtended angles 1 x 1 ° at the crystal. Lorentz- 
polarization and other subsequent corrections were 
performed using the program package Xtal3 .0  (Hall & 
Stewart, 1990). The three standard reflections measured 
every 120min showed a significant linear decrease in 
intensity of ca 30% throughout the 3 weeks of data 
collection time due to decreasing tube intensity. After 
correcting the data for this decrease in standard reflection 
intensities no unusual features were left. Averaging the 
reflection intensities in Laue symmetry m m m  gave 460 
unique reflections (internal R = 0.036 on F2). Other 
important parameters for the data collection on 
(Zr9N8_zFl_zO2z)Fli are given in Table 1.~" 

composition shows that the variable stoichiometry is 
almost solely accommodated by variation in the H 
substructure c-axis dimension (Schmid & Withers, 
1994). The exact stoichiometry, i.e. z in the above 
formula, is difficult to determine as substitutions of the 
type 202-¢~N3-+F - may occur in the Q substucture 
without altering the overall anion-to-cation ratio and 
hence Ca/Ct_ t. 

The symmetry of the composite system and of the two 
component subsystems has already been described in 
some detail (Withers, Schmid & Thompson, 1993; 
Schmid & Withers, 1994), however, the setting used in 
this paper is somewhat different (see §3). Following 
procedures described in a previous paper (Schmid & 
Withers, 1994), single crystals of a ,4 = 0.22 composi- 
tion, i.e. (ZrgNs_zFl_zO2~)Fll, within the above solid 
solution have been grown. The purpose of this paper is to 
present the results of a single-crystal X-ray structure 
refinement of these crystals using the superspace group 
approach. 

2. Experimental 

2.1. Synthes is  

Single crystals of (Zr9Ns_zFl_zO2z)Fll were grown 
according to procedures described previously (Jung & 
Juza, 1973; Schmid & Withers, 1994). 

2.2. Intensi ty  m e a s u r e m e n t  a n d  data  process ing  

Preliminary investigations of the single crystal used 
for data collection gave the c axis ratio of the H and Q 
substructures as 9,  i.e. to within the accuracy of 

3. Symmetry considerations 

In a previous paper (Withers, Schmid & Thompson, 
1993), the point-group symmetry of reciprocal space and 
the extinction conditions characteristic of all composi- 
tions within this solid solution were used to determine 
the overall superspace-group symmetry of this phase. 
Both underlying parent substructures (aa --  a H, 
bQ = 2b n ,  c a ",, 1.2cn) as well as the analytical form 
of the atomic modulation functions (AMF's; P&ez-Mato, 
Madariaga, Zfifiiga & Garcia Arribas, 1987) describing 
the mutual influence of the two parent substructures upon 
each other were also given. The primary modulation 
wavevectors characteristic of the Q and H substructures 
were given as qQ = c~ -- 2c~ and qn = ½ b~ + c~ - c~, 
respectively. 

In this paper, following a recently suggested conven- 
tion as regards the choice of primary modulation 
wavevectors for composite modulated structures (Yama- 
moto, 1992, 1993), all reflections are indexed with 
respect to a basis set of four reciprocal lattice vectors - 
namely M* --- {a~, b~, c~, c~ }. Similarly, following the 
convention originally proposed by de Wolff, Janssen & 
Janner (1981) and, more recently, by Janssen, Janner, 
Looijenga-Vos & de Wolff (1992), the unit cell of the H 
parent substructure given in Withers, Schmid & 
Thompson (1993; see Fig. 1 therein) has been doubled 
along the b direction so that the rational component of tin 

t A list of structure factors has been deposited with the IUCr 
(Reference: JS0009). Copies may be obtained through The Managing 
Editor, International Union of Crystallography, 5 Abbey Square, 
Chester CH1 2HU, England. 
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Table 2. Average substructure positions and anisotropic 
thermal parameters for the Q and H substructures 

Si te  x 

M1Q - 0 . 1 9 2 2 5  (5) 
A1Q 0 
A1 n 1/2 

y z U 1 1  U 2 2  U 3 3  
1/4 0 0.0049 (1) 0.0045 (2) 0.0061 (1) 
0 - 1 / 4  0.007 (1) 0.0053 (9) 0.0064 (8) 

- 0 . 1 2 6 4  (4) - 1 / 4  0.008 (1) 0.0108 (8) 0.016 (1) 

becomes an integer with respect to the above basis set. In 
this setting, qa = c~ and qn = c~1. 

With respect to this basis set, the reported extinction 
conditions (Withers, Schmid & Thompson, 1993) are 
now given by F(HKLm)=O unless K + L = 2 n ,  
F(OKLm)=O unless K , L = 2 n  and F(HOLm)=O 
unless L, m - - 2 n .  The former condition requires a 
centring in superspace of the form {El0,½,½,0}, the 
next a glide plane {o'xl0, l ,  0, 0} and the latter a glide 
plane of the form {%10,1,0, ½}. In conjunction with the 
mmm point-group symmetry of reciprocal space, the 
implied superspace group is Acmm(O,O,1.222..)OsO in the 
notation of Janssen, Janner, Looijenga-Vos & de Wolff 
(1992). The generators of both the Q and H component 
substructure-superspace groups (van Smaalen, 1991) can 
now be derived by the use of the appropriate permutation 
matrices [ W  Q --- PQ - -  (1) and W n = pit = (3, 4) in the 
notation of Yamamoto (1993)] and are given by 
{El0, ½,½,0}Q, {O'x]0, ½,0, 0}a, {Cryl0, ½,0, ½}Q and 
{il000, 23} 0 in the case of the Q substructure and 

1 Y {El0, ~, 0, ~}H, {crxl0 ' 1 ,  0 ,  0}H , 1 I {%10,~,~,0} n and 
{il00, 23, 0}t_ / in the case of the H substructure. The 
corresponding Q substructure component superspace 
group is Acmm(O,O,1.222..)OsO. The corresponding H 
substructure component superspace group (with respect 
to the true H substructure unit-cell dimensions of 
a, b H, cn) is Pmcm(O, 1,0.8181...)s00. 

The relative origin of the two substructures has been 
fixed by application of the superspace-group symmetry 
operation {i1000, 28} to the entire composite structure. In 
terms of the expressions for the AMF's  derived in the 
previous paper (Withers, Schmid & Thompson, 1993), 
this corresponds to putting 0(qQ) = 

180 ° -- 27t'C~4.1Ca -- 2n'3 and 0(qn) = 0 ° + 2n-c~.3cn, 
respectively. As a consequence, the two substructures 
have a common origin at ¼ CQ and (,} - 3)Cn, respectively, 
with respect to the origins shown in Fig. 1 of Withers, 
Schmid & Thompson (1993), i.e. the M1 or Zr (site 
symmetry 2ram) and A 1 or (N,O,F) (site symmetry 222) 
sites of the average Q substructure now occur with 
fractional coordinates given by x, ¼,0 and 0, 0 , - ¼ ,  
respectively (with x-,~ -0 .19) ,  while the A1 or F (site 
symmetry m2m) site of the average H substructure now 
occurs with fractional coordinates given by }, y, ( 3 -  ¼) 
with y ~. - }  (-,~ - }  rather than "-~ -¼  as a result of the 
doubled b/4 axis; see Table 2). 

The constraints on the allowed displacements asso- 
ciated with even- and odd-order modulation waves are as 
given previously (Withers, Schmid & Thompson, 1993). 
With respect to the above origin, the displacive AMF's  

describing the structural deviation of the M1 and A1 
atoms away from their positions in the average Q 
substructure are given by 

UMI(TQ) = aa ~ eMx(2nqa)COS(2n2yr[qa.To -- 3]) 
2n=2,4 .... 

- b e ~ t~My((2n + 1)qQ) 
2n+1=1 ,3  .... 

x sin((2n + 1)2rr[qQ.TQ -- 3]) 

-- CQ ~ eM~(2nqQ ) sin(2n2yr[qQ.TQ -- 3]) 
2n=2,4  .... 

UAI(TQ) = --aQ ~ eax((2n + 1)qQ) 
2n+1=1 ,3  .... 

x cos((2n + 1)2rr[qo.(T Q - ¼eQ) -- 8]) 

+ bQ ~ eay((Zn + 1)qQ) 
2n+1=1 ,3  .... 

x sin((2n + 1)2zr[q0.(T 0 - ¼co) - 8]) 

--  CQ E eaz(2nqQ) 
2n=2,4  .... 

x sin(2n2zc[qQ.(Ta -- ~CQ) -- 3]), 

where qQ = C~, TQ is a Bravais lattice vector of the Q 
substructure and n = mQ is an integer which labels the 
harmonic order of the corresponding modulation wave 
with respect to the underlying Q substructure. The 
corresponding displacive AMF's  describing the structur- 
al deviation of the A 1 atoms away from their positions in 
the average H substructure are given by 

UAI(TH) = an ~ eax((2n + 1)qn)COS(mr 
2n+1=1 ,3  .... 

+ (2n + 1)2zr[q/4.(T n + [3 - ~ c , )  + b~.Tn] ) 

+ bn ~ eAy(2nqn) cos(mr 
2n=2,4 .... 

+ 2n2:r[qn.(Tn + [8 - ~Cn) + b~.Tn] ) 

+ Cn ~ eAz(2nqn ) sin(mr + 2n2rr 
2n=2,4  .... 

× [qn'(T n + [3 - ~cn) + b~-Tn]), 

where qn = c~, T n is a Bravais lattice vector of the H 
substructure (including the translation b n = l bQ) and 
n = m n is an integer which labels the harmonic order of 
the corresponding modulation wave with respect to the 
underlying H substructure. The refined values for these 
displacive modulation wave amplitudes (see Table 3) can 
be compared directly with those recently obtained from a 
Fourier decomposition of the reported crystal structure of 
Zr108N98FI38 (Withers, Schmid & Thompson, 1993). 

4. Refinement details 

The refinements were carried out using the software 
package JANA94 (Petricek, 1994). The atomic scattering 
factors are from International Tables for X-ray Crystal- 
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Table 3. Modulation wave amplitudes for the structure 
refinement ofZr9(N,O,F)20 (a) Q and (b) H substructure; 

note: '0 '  denotes 0 by symmetry 

(a) 

n eMx(nqQ) eMy(nqQ) eM~(nqQ) 
1 0 -0.03283 (8) 0 
2 -0.00051 (18) 0 -0.00268 (13) 
3 0 -0.01129 (10) 0 
n eax(nqQ) eAy(nqQ) eaz(nqQ) 
1 0.04582 (72) -0.02612 (70) 0 
2 0 0 -0.00106 (123) 
3 -0.00530 (152) 0.01155 (85) 0 
(b) 
n ea:,(nqH) eAy(nqH ) eAz(nq H) 
1 0.07934 (60) 0 0 
2 0 --0.00171 (62) --0.00239 (90) 
3 0.00979 (76) 0 0 
4 0 --0.00196 (71) 0.00382 (90) 

lography (Vol. IV, 1974). The structure was initially 
refined as a commensurate composite structure with the 
parameter 8 chosen as zero corresponding to a three- 
dimensional supercell space-group symmetry of Pbcb. 
Note that the possible three-dimensional supercell space- 
group symmetries of (Zr9N8_zFl_zO2z)Ftl, where c,/cQ 
apparently equals 9/11 exactly, can be derived from the 
superspace-group symmetry given in §3 (see Yamamoto 
& Nakazawa, 1982; Wiegers et al., 1990) and are given 
by 

Pbcb (for 8 = 2N/36, N an integer) 

Pbcm (for 8 = (2N + 1)/36) 

Pbc21 (otherwise). 

The starting model for the refinement of the structure (i.e. 
starting values for the above displacive modulation wave 
amplitudes) was taken from the Fourier decomposition of 
the published structure of Zr108N98FI38 (Withers, Schmid 
& Thompson, 1993). In the first step only the average 
substructures were ref'med using both sets of parent 
reflections. The major displacive modulation wave 
amplitude for each of the atoms, i.e. eMy(qa), eAx(qa) 
and eAx(qM) was then added and refined starting with the 
value as derived from Zr108N98F138 and using parent and 
first-order satellite reflections of both substructures. All 
possible sign combinations for these modulation wave 
amplitudes were tested in the refinement. The correct 
combination of signs resulted in significantly lower R- 
values than any of the other possibilities. The remaining 
modulation wave amplitudes were then released for 
refinement with zero as starting values. False minima 
were investigated by systematically reversing the sign of 
various modulation wave amplitudes. In each case, the 
refinement self-corrected, i.e. the corresponding ampli- 
tudes in each case reversed sign to return to their original 
values. 

The lack of observed higher-order satellite reflections 
[no satellite reflections of order higher than n = 4, 
n = min(Imal, ImHI), were observed] suggested, how- 
ever, that the relative origin of the two substructures, i.e. 

Table 4. Refinement statistics (%) 

n No. o f  ref lect ions Mode l  1 Mode l  2 
0 212 1.49 1.50 
I 206 2.10 2.10 
2 11 8.52 8.43 
3 29 5.81 5.79 
4 2 17.22 17.20 
Ral 1 460 1.87 1.87 
R w 460 2.63 2.62 

Mode l  1: incommensura te  ref inement ;  model  2: commensura t e  

ref inement .  

8, might well be an unrefineable parameter (see, for 
example, Prrez-Mato, 1991). Hence, the structure was 
also ref'med as an incommensurate composite structure 
(see, for example, Yamamoto, 1993). Refinement as an 
incommensurate structure entails an integration over all 
possible relative origins of the two substructures. 

This refinement as an incommensurate structure led to 
almost identical R-values and converged smoothly to a 
final overall R-value of 0.019 once an isotropic 
extinction correction had been incorporated (see Table 
4). Refinement using full-matrix least squares was on F. 
An additional uncorrelated error of 0.01 was included 
with the counting statistic estimate in the evaluation of 
weights. Atoms were refined with anisotropic thermal 
parameters. The anion positions in the Q substructure 
were occupied with 8/9N+l/9F. The final refined 
parameters for the average substructures are given in 
Table 2 and the final refined displacive modulation wave 
amplitudes in Table 3. All major modulation wave 
amplitudes agree very well with the values derived from 
the structure of Zr108N98F138, as is evident from a 
comparison of the displacive modulation wave ampli- 
tudes listed in Table 3 and those given in Tables 1 and 2 
of Withers, Schmid & Thompson (1993). The refinement 
statistics for the incommensurate model (Model 1) and 
the commensurate Pbcb model (Model 2) split into 
reflection classes labelled by the harmonic order of the 
reflections are given in Table 4 (note: refinements as a 
commensurate structure were also carded out at values of 
8 other than zero, but gave identical refinement statistics 
and are not reported here). 

5. Results and discussion 

5.1. Atomic modulation functions 

The refined displacive atomic modulation functions 
(AMF's) for the final model, i.e. UMl as a function of 
(qQ.T e -- 8) modulo an integer and UA1 as a function of 
[ q a . ( T a - ¼ c a ) - 8 ]  modulo an integer for the Q 
substructure, as well as UA1 as a function of 
q/_t.(TH-I-[8--¼]CH) modulo an integer for the H 
substructure, are shown in Figs. 1-3, respectively. Note 
that Zr occupies the M1 site and (N,O,F) the A1 site of 
the Q substructure, while the A1 site of the H 
substructure is occupied by F alone. The Zr atoms of 



750 Zr9(N,O,F)20 REFINEMENT 

the Q substructure show a large modulation amplitude 
only along the b direction, whereas the anions of the Q 
substructure are strongly modulated along both a and b 
directions. The F atoms of the H substructure show 
strong modulation only along the a direction. None of the 
atoms display a significant modulation amplitude along c. 

Fig. 4 shows the variation in the coordination sphere 
of Zr as a function of (qQ.TQ -- 8) modulo an integer. 
Each Zr atom is coordinated by four N (O, F) atoms 
within the same substructure. The distances between the 
Zr atoms and these anions in the Q substructure (the dot- 
dashed lines) do not show a large variation, although a 
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Fig. 1. Final refined Q substructure metal atom AMF's,  i.e. (a) U~l, 
(b) U~l and (c) U~I plotted in fractional coordinates as a function of 
t = (qQ.TQ -- &) modulo an integer. 

0.08 

0.06 - 

0.04 - 

0.02 - 

0- 

-0.02- 

-0.04- 

-0.06- 

-0.08 

0.08 

0 
(a) 

0.06- 

0.04- 

0.02 - 

0- 

-0.02- 

-0.04 i 

=1 
0 

(b) 
0.08 

0.06'  

0.04: 

0.02- 

-0.02. 

-0.04- 

-0.06- 

-0.08 
0 

/ 

(c) 

Fig. 2. Final refined Q substructure anion AMF's,  i.e. (a) U,~ I, (b) U~l 
and (c) U~I plotted in fractional coordinates as a function of 
t = [qQ-('r e - ¼ cQ) - 8] modulo an integer. 
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difference of --, 0.16 ,~ between minimum and maximum 
values is certainly significant. The distances between Zr 
and the F atoms in the H substructure (the solid lines) 
show a larger variation (note: in the incommensurate case 
this range is given by the minimum distance and infinity) 
due to the fact that the two substructures literally shift 

0.08 

0.06 

0.04. 

0.02 - 

0- 

~'~ -0.02- 
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(c) 

Fig. 3. Final refined H substructure anion AMF's,  i.e. (a) U~1, (b) UYl 
and (c) U~l plotted in fractional coordinates as a function of 
t = qa.(Tn + [& - ~e H) modulo an integer. 

past each other, resulting in a continuously changing 
coordination sphere. This distance variation leads to 
overall metal coordination ranging from 6 to 8 with 
clearly quite irregular coordination polyhedra. 

Fig. 5 shows a projection of the structure down b. One 
'supercell '  along c (c = 9cQ = 1 lcH) is shown. Unit cells 
of both parent substructures are outlined (common origin 
at the bottom left comer). This origin corresponds to 

-- 0 resulting in a 'supercell '  space-group symmetry of 
Pbcb. It is readily seen that the F atoms move strongly 
along the a, i.e. layer stacking, direction. The anions in 
the Q substructure also move along the a direction 
although to a lesser extent. The metals, however, do not 
move at all along a (cf. the appropriate AMF's).  None of 
the atoms show any significant motion along c. The 
projection down a in Fig. 6 shows that the H substructure 
is virtually undistorted along both b and e, whereas the 
metal atoms and anions of the Q substructure move 
significantly along b but not along c. Fig. 6 shows that 
the H substructure is an almost perfect 36-net in 
projection along a. This 36-net, however, is substantially 
buckled as can be seen from the large amplitude motion 
along a shown in Fig. 5. Similarly, while the anions in 
the 4a-net appear to remain in the centre of the 
surrounding tetrahedron of metal atoms in projection 
down a, it can be seen in Fig. 5 that they do move 
significantly off the centre of the tetrahedra along a. 

5.2. Apparent valence calculations 

Apparent valences (AV's; Brown & Altermatt, 1985; 
O'Keeffe, 1989) are often an extremely useful guide to 
the reliability of refined crystal structures and have 
previously been calculated for a number of structures that 
belong to the same type of inorganic misfit layer 
compounds, e.g. ZrlosN98FI38,  Y 7 0 6 F 9  ( S c h m i d  & 
Withers, 1994). For ZrI08N98F138, it was found that the 
N and Zr atoms ended up with AV's  that suggested 
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Fig. 4. Shows the variation in the coordination sphere of Zr as a 
function of t = (qQ.TQ- d) modulo an integer. The distances 
between the Zr 's and the anions in the Q substructure are shown 
by the dot--dashed lines, whereas the distances between Zr and F 
atoms in the H substructure are shown by the solid lines. 
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strong overbonding, while the spread of the values 
(4-0.2 units) was assumed to be within error. 

In order to calculate AV's  for (Zr9N8_zFl_zO2z)F~, 
atomic coordinates in a supercell approximation were 
derived from the AMF's  given above, assuming ~ = 0. 
The conventional three-dimensional space-group with 
this origin is Pbcb, a non-standard setting of Pcca (No. 
54). There are then five crystallographically independent 
Zr and anion positions in the Q substructure and six F 
positions in the H substructure. The corresponding AV's  
[r~: (Zr4+--N 3-) = 2.11,4,; ( z r g + - - F  - )  : 1.854,4,; 
E U T A X  (Brese & O'Keeffe, 1991)] range from 4.4 to 
4.5 for the Zr atoms, 3.3-3.4 for the Q substructure 
anions and 0.9-1.0 for the H substructure anion sites 
(note: AV's  calculated with Q substructure anion sites 
occupied by ~N and ~F). These AV's  do not substantially 
differ from the values calculated for Zr~08N98F~a 8 
(Schmid & Withers, 1994). In particular, the N and Zr 
atoms again ended up with AV's  indicating strong 
overbonding. Given the quality of the present refinement 
of (Zr9Ns_zF~_~OEz)F~, one would expect to obtain 
reasonable AV's .  

Two possible reasons for such a deviation from the 
expected values could be that the positions of the N 
atoms are not correct or that the bond-length/bond- 
valence parameter r~(Zr4+--N 3-) is not determined 
accurately enough (Brese & O'Keeffe,  1991). A recent 

s o° ° ° o  . I • | .° .~ , , , , ; °. I • $ ; ° ; .  s 

• . .  ;NXxX. 
I ' ) I F  " s " s ".." : , , ; : • s • s • :2" ' 

Fig. 5. A projection of the structure down b. One 'supercell' along c 
(c=9CQ=llcn) is shown. The unit cells of both parent 
substructures are outlined (common origin at the bottom left 
comer), a up the page, c to the right. Q substructure atoms are 
shown as open circles (Zr large; A small) and H substructure atoms as 
full circles. 
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Fig. 6. A projection of part of the structure down a, b up the page, c to 
the right. Q substructure atoms are shown as open circles (Zr large; A 
small) and H substructure atoms as full circles. 

review of inorganic nitrides (Brese & O'Keeffe,  1992) 
gives only very few examples of zirconium nitrides, 
suggesting that the listed r~ parameter for Z r 4 + - - N  3- is 
based on very few experimental refinements. Therefore, 
it might well be that r~(Zr 4 + - N  3-) is not the value that 
should be used for our particular structure. As the 
parameters of the Q substructure are refined with low 
standard deviations it is considered less likely that the 
mentioned deviations in AV's  result from inaccurate 
coordinates. 

The apparent overbonding of the Q substructure 
anions could be reduced by fixing them at the centre of 
their surrounding metal tetrahedra. The reffmement, 
however, shows that these anions clearly do move from 
the centre of their surrounding metal tetrahedra. Such 
motion is similar to the corresponding motion of O atoms 
in isostructural Y - - O - - F  compounds (Bevan, Mohyla, 
Hoskins & Steen, 1990). In these latter cases, the Q 
substructure anions (and metals) show no indication of 
overbonding (Schmid & Withers, 1994). In summarY, it 
would appear that the bond valence parameter, r~, for 
z r a + - - N  3- needs to be modified for this type of 
structure. 

6. Concluding remarks 

A composite modulated structure approach has been used 
to refine and describe the structure of 
(Zr9Ns_zFl_zOEz)Fll. Starting values for the displacive 
modulation wave amplitudes used in the refinement were 
derived from a previously reported structure ref'lnement 
of a single crystal with different composition. If regarded 
as conventional three-dimensional structures, these 
structures would appear to be quite different - they 
would have to be described by different space groups for 
example. Refinement in terms of modulation waves, 
however, reveals the extraordinary similarity of the 
structures - both being members of the same solid 
solution. The pattern of atomic displacements expressed 
by the AMF's  and presented in this paper can, therefore, 
be taken as being representative of the whole solid 
solution. The similarity between commensurate and 
incommensurate refinements, given the continuously 
variable primary modulation wavevector (Schmid & 
Withers, 1994), shows that the structure is best described 
as an incommensurate composite structure. 

The authors wish to thank Dr A. Yamamoto for his 
programs M O D P L T  used for plotting Fig. 4 and PRJMS 
used for plotting Figs. 5 and 6. 
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Abstract 

Structural phase transitions ('type 0') in which there is no 
change of space group or of the occupied Wyckoff sites 
contrast with others in which diffusionless 
transformation can occur in a single step between higher- 
and lower-symmetry space groups (type I), through a 
low-symmetry transition state between relatively higher- 
symmetry initial and final structures (type II), and those 
where the mechanism is necessarily more complex (type 
III). A phenomenological model shows that type 0 
transitions are necessarily first order, and may terminate 
at a critical point. The corresponding supercritical 
behaviour is a 'crossover' or 'diffuse transition' in which 
there is no discontinuity in any free-energy derivative. 
However, the location of the crossover is precisely 
defined at a minimum in the second derivative of the free 
energy with respect to a suitable order parameter. 
Isosymmetric transitions and/or crossovers occur in 
important mineralogical systems (pyroxenes, feldspars 
and carbonates) and non-linear optic materials 
(KTiOPO4). Non-monotonic variation of free-energy 
derivatives around the crossover can have a serious 
effect on the locations and slopes of phase equilibria in 
pressure-temperature space. Interaction between 
non-symmetry-breaking and symmetry-breaking order 
parameters appears to play a major r61e in stabilizing 
low-symmetry clinopyroxene and anorthite feldspar 
phases. 
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I. Introduction 

This paper presents an extension of an approach to the 
classification of phase transitions that has been outlined 
previously (Christy, 1993). In that work, three types of 
transition were rigorously distinguished on symmetry 
criteria: 

(1) Transitions in which a low-symmetry (LS) phase is 
obtained from a high-symmetry (HS) phase by atomic 
displacements which are consistent with a unique non- 
identity irreducible representation of the higher 
symmetry. These type I transitions can be modelled 
phenomenologicaUy using Landau theory, and can be 
first or second order thermodynamically. 

(2) 'Type II' transitions in which two different HS 
structures share a common LS phase and can be regarded 
as having special cases of the LS structure which arise 
when a structural parameter of the LS structure takes 
special values. The initial and final structures (HS) and 
transition state (LS) of a 'martensitic' transition are 
examples. The free energy of such systems may be 
expressed as a Fourier series in the appropriate order 
parameter. Examples are reviewed in Tol&tano & 
Dmitriev (1993) and described in more detail in papers 
cited therein. 

(3) 'Type III' transitions, where the atomic rearrange- 
ments involved are more complex. These can be 
decomposed into multiple type I and type II steps, which 
link various transition states of specific symmetry. 
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